
Design Concepts 

Introduction: Software design encompasses the set of principles, concepts, and 

practices that lead to the development of a high-quality system or product. Design 

principles establish an overriding philosophy that guides you in the design work 

you must perform. Design is pivotal to successful software engineering 

The goal of design is to produce a model or representation that exhibits 

firmness, commodity, and delight Software design changes continually as new 

methods, better analysis, and broader understanding evolve 

DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING 

 

Software design sits at the technical kernel of software engineering and is 

applied regardless of the software process model that is used. Beginning once 

software requirements have been analyzed and modeled, software design is the last 

software engineering action within the modeling activity and sets the stage for 

construction (code generation and testing). 

Each of the elements of the requirements model provides information that is 

necessary to create the four design models required for a complete specification of 

design. The flow of information during software design is illustrated in following 

figure. 

The requirements model, manifested by scenario-based, class-based,  flow-

oriented, and behavioral elements, feed the design task. 

The data/class design transforms class models into design class realizations 

and the requisite data structures required to implement the software. 

 



The architectural design defines the relationship between major structural 

elements of the software, the architectural styles and design patterns that can be 

used to achieve the requirements defined for the system, and the constraints that 

affect the way in which architecture can be implemented. The architectural design 

representation—the framework of a computer- based system—is derived from the 

requirements model. 

 

Fig : Translating the requirements model into the design model 

 

The interface design describes how the software communicates with 

systems that interoperate with it, and with humans who use it. An interface implies 

a flow of information (e.g., data and/or control) and a specific type of behavior. 

Therefore, usage scenarios and behavioral models provide much of the information 

required for interface design. 

The component-level design transforms structural elements of the software 

architecture into a procedural description of software components. Information 

obtained from the class-based models, flow models, and behavioral models serve 

as the basis for component design. 

The importance of software design can be stated with a single word—



quality. Design is the place where quality is fostered in software engineering. 

Design provides you with representations of software that can be assessed for 

quality. Design is the only way that you can accurately translate stakeholder’s 

requirements into a finished software product or system. Software design serves as 

the foundation for all the software engineering and software support activities that 

follow. 

THE DESIGN PROCESS 

 

Software design is an iterative process through which requirements are 

translated into a “blueprint” for constructing the software. Initially, the blueprint 

depicts a holistic view of software. That is, the design is represented at a high level 

of abstraction 

Software Quality Guidelines and Attributes 

McGlaughlin suggests three characteristics that serve as a guide for the 

evaluation of a good design: 

• The design must implement all of the explicit requirements contained in 

the requirements model, and it must accommodate all of the implicit 

requirements desired by stakeholders. 

• The design must be a readable, understandable guide for those who 

generate code and for those who test and subsequently support the software. 

• The design should provide a complete picture of the software, addressing 

the data, functional, and behavioral domains from an implementation 

perspective. 

Quality Guidelines. In order to evaluate the quality of a design 

representation, consider the following guidelines: 

1. A design should exhibit an architecture that (1) has been created using 

recognizable architectural styles or patterns, (2) is composed of components 

that exhibit good design characteristics and (3) can be implemented in an 



evolutionary fashion,2 thereby facilitating implementation and testing. 

2. A design should be modular; that is, the software should be logically 

partitioned into elements or subsystems. 

3. A design should contain distinct representations of data, architecture, 

interfaces, and components. 

4. A design should lead to data structures that are appropriate for the classes 

to be implemented and are drawn from recognizable data patterns. 

5. A design should lead to components that exhibit independent functional 
characteristics. 

6. A design should lead to interfaces that reduce the complexity of 

connections between components and with the external environment. 

7. A design should be derived using a repeatable method that is driven by 

information obtained during software requirements analysis. 

8. A design should be represented using a notation that effectively 

communicates its meaning. 

Quality Attributes. Hewlett-Packard developed a set of software quality attributes 

that has been given the acronym FURPS—functionality, usability, reliability, 

performance, and supportability. The FURPS quality attributes represent a 

target for all software design: 

• Functionality is assessed by evaluating the feature set and capabilities of 

the program, the generality of the functions that are delivered, and the 

security of the overall system.. 

• Usability is assessed by considering human factors, overall aesthetics, 

consistency, and documentation. 

• Reliability is evaluated by measuring the frequency and severity of failure, 

the accuracy of output results, the mean-time-to-failure (MTTF), the ability 

to recover from failure, and the predictability of the program. 

• Performance is measured by considering processing speed, response time, 



resource consumption, throughput, and efficiency. 

• Supportability combines the ability to extend the program (extensibility), 

adaptability, serviceability—these three attributes represent a more common 

term, maintainability— and in addition, testability, compatibility, 

configurability, the ease with which a system can be installed, and the ease 

with which problems can be localized. 

The Evolution of Software Design 

The evolution of software design is a continuing process that has now 

spanned almost six decades. Early design work concentrated on criteria for the 

development of modular programs and methods for refining software structures in 

a top down manner. Procedural aspects of design definition evolved into a 

philosophy called structured programming. 

A number of design methods, growing out of the work just noted, are being 

applied throughout the industry. All of these methods have a number of common 

characteristics: (1) a mechanism for the translation of the requirements model into 

a design representation, (2) a notation for representing functional components and 

their interfaces, (3) heuristics for refinement and partitioning, and (4) guidelines for 

quality assessment. 

DESIGN CONCEPTS 

 

A set of fundamental software design concepts has evolved over the history 

of software engineering. Each provides the software designer with a foundation 

from which more sophisticated design methods can be applied. Each helps you 

answer the following questions: 

• What criteria can be used to partition software into individual components? 

• How is function or data structure detail separated from a conceptual 

representation of the software? 

• What uniform criteria define the technical quality of a software design? 



The following brief overview of important software design concepts that span 

both traditional and object-oriented software development. 

Abstraction 

Abstraction is the act of representing essential features without including the 

background details or explanations. the abstraction is used to reduce complexity 

and allow efficient design and implementation of complex software systems. Many 

levels of abstraction can be posed. At the highest level of abstraction, a solution is 

stated in broad terms using the language of the problem environment. At lower 

levels of abstraction, a more detailed description of the solution is provided. 

As different levels of abstraction are developed, you work to create both 

procedural and 

data abstractions. 

A procedural abstraction refers to a sequence of instructions that have a 

specific and limited function. The name of a procedural abstraction implies these 

functions, but specific details are suppressed. 

A data abstraction is a named collection of data that describes a data object. 

Architecture 

Software architecture alludes to “the overall structure of the software and 

the ways in which that structure provides conceptual integrity for a system” 

Architecture is the structure or organization of program components (modules), the 

manner in which these components interact, and the structure of data that are used 

by the components. 

Shaw and Garlan describe a set of properties that should be specified as part of 

an architectural design: 

 Structural properties. This aspect of the architectural design representation 

defines the components of a system (e.g., modules, objects, filters) and the 

manner in which those components are packaged and interact with one 

another. 



 Extra-functional properties. The architectural design description should 

address how the design architecture achieves requirements for performance, 

capacity, reliability, security, adaptability, and other system characteristics. 

 Families of related systems. The architectural design should draw upon 

repeatable patterns that are commonly encountered in the design of families 

of similar systems. In essence, the design should have the ability to reuse 

architectural building blocks. 

The architectural design can be represented using one or more of a number of different 

models. Structural models: Represent architecture as an organized collection of program 

components. Framework models: Increase the level of design abstraction by attempting 

to identify repeatable architectural design frameworks that are encountered in similar 

types of applications. 

Dynamic models : Address the behavioral aspects of the program architecture, 

indicating how the structure or system configuration may change as a function of 

external events. 

Process models :Focus on the design of the business or technical process that the system 

must accommodate. 

Functional models can be used to represent the functional hierarchy of a system. 

A number of different architectural description languages (ADLs) have 

been developed to represent these models. 

Patterns 

Brad Appleton defines a design pattern in the following manner: “A pattern 

is a named nugget of insight which conveys the essence of a proven solution to a 

recurring problem within a certain context amidst competing concerns” 

A design pattern describes a design structure that solves a particular design 

problem within a specific context and amid “forces” that may have an impact on 

the manner in which the pattern is applied and used. 



The intent of each design pattern is to provide a description that enables a 

designer to determine (1) whether the pattern is applicable to the current work, (2) 

whether the pattern can  be reused (hence, saving design time), and (3) whether the 

pattern can serve as a guide for developing a similar, but functionally or 

structurally different pattern. 

Separation of Concerns 

Separation of concerns is a design concept that suggests that any complex 

problem can be more easily handled if it is subdivided into pieces that can each be 

solved and/or optimized independently. A concern is a feature or behavior that is 

specified as part of the requirements model for the software. 

Separation of concerns is manifested in other related design concepts: 

modularity, aspects, functional independence, and refinement. Each will be 

discussed in the subsections that follow. 

8.3.5 Modularity 

Modularity is the most common manifestation of separation of concerns. 

Software is divided into separately named and addressable components, sometimes 

called module. 

Modularity is the single attribute of software that allows a program to be 

intellectually manageable 

 

 



 

 

Fig : Modularity and software cost 
Information Hiding 

The principle of information hiding suggests that modules be “characterized by 

design decisions that hides from all others.” In other words, modules should be 

specified and designed so that information contained within a module is 

inaccessible to other modules that have no need for such information.The use of 

information hiding as a design criterion for modular systems provides the greatest 

benefits when modifications are required during testing and later during software 

maintenance. Because most data and procedural detail are hidden from other parts 

of the software, inadvertent errors introduced during modification are less likely to 

propagate to other locations within the software. 

Functional Independence 

The concept of functional independence is a direct outgrowth of separation 

of concerns, modularity, and the concepts of abstraction and information hiding. 

Functional independence is achieved by developing modules with “single minded” 

function and an “aversion” to excessive interaction with other modules. 

Independence is assessed using two qualitative criteria: cohesion 

and coupling. Cohesion is an indication of the relative functional strength 



of a module. Coupling is an indication of the relative interdependence 

among modules. 

Cohesion is a natural extension of the information-hiding concept. A 

cohesive module performs a single task, requiring little interaction with other 

components in other parts of a program. Stated simply, a cohesive module should 

do just one thing. Although you should always strive for high cohesion (i.e., 

single-mindedness). 

Coupling is an indication of interconnection among modules in a software 

structure. Coupling depends on the interface complexity between modules, the 

point at which entry or reference is made to a module, and what data pass across 

the interface. In software design, you should strive for the lowest possible 

coupling. 

Refinement 

Stepwise refinement is a top-down design strategy originally proposed by 

Niklaus Wirth. Refinement is actually a process of elaboration. You begin with a 

statement of function that is defined at a high level of abstraction. 

Abstraction and refinement are complementary concepts. Abstraction 

enables you to specify procedure and data internally but suppress the need for 

“outsiders” to have knowledge of low-level details. Refinement helps you to reveal 

low-level details as design progresses. 

Aspects 

An aspect is a representation of a crosscutting concern. A crosscutting concern is 

some characteristic of the system that applies across many different requirements. 

Refactoring 

An important design activity suggested for many agile methods, refactoring is a 

reorganization technique that simplifies the design (or code) of a component 

without changing its function or behavior. Fowler defines refactoring in the 



following manner: “Refactoring is the process of changing a software system in 

such a way that it does not alter the external behavior of the code [design] yet 

improves its internal structure.” 

Object-Oriented Design Concepts 

The object-oriented (OO) paradigm is widely used in modern software 

engineering. OO design concepts such as classes and objects, inheritance, 

messages, and polymorphism, among others. 

Design Classes 

The requirements model defines a set of analysis classes. Each describes some 

element of the problem domain, focusing on aspects of the problem that are user 

visible. A set of design classes that refine the analysis classes by providing design 

detail that will enable the classes to be implemented, and implement a software 

infrastructure that supports the business solution. 

Five different types of design classes, each representing a different layer 

of the design architecture, can be developed: 

• User interface classes define all abstractions that are necessary for human 

computer interaction (HCI). The design classes for the interface may be 

visual representations of the elements of the metaphor. 

• Business domain classes are often refinements of the analysis classes 

defined earlier. The classes identify the attributes and services (methods) 

that are required to implement some element of the business domain. 

• Process classes implement lower-level business abstractions required to 

fully manage the business domain classes. 

• Persistent classes represent data stores (e.g., a database) that will persist 

beyond the execution of the software. 

• System classes implement software management and control functions that 

enable the system to operate and communicate within its computing 



environment and with the outside world. 

Arlow and Neustadt suggest that each design class be reviewed to ensure 

that it is “well- formed.” They define four characteristics of a well-formed 

design class: 

 Complete and sufficient. A design class should be the complete 

encapsulation of all attributes and methods that can reasonably be expected 

to exist for the class. Sufficiency ensures that the design class contains only 

those methods that are sufficient to achieve the intent of the class, no more 

and no less. 

 Primitiveness. Methods associated with a design class should be focused on 

accomplishing one service for the class. Once the service has been 

implemented with a method, the class should not provide another way to 

accomplish the same thing. 

 High cohesion. A cohesive design class has a small, focused set of 

responsibilities and single-mindedly applies attributes and methods to 

implement those responsibilities. 

 Low coupling. Within the design model, it is necessary for design classes to 

collaborate with one another. If a design model is highly coupled, the system 

is difficult to implement, to test, and to maintain over time. 

THE DESIGN MODEL 

 

The design model can be viewed in two different dimensions. The process 

dimension indicates the evolution of the design model as design tasks are executed 

as part of the software process. The abstraction dimension represents the level of 

detail as each element of the analysis model is transformed into a design equivalent 

and then refined iteratively. The design model has four major elements: data, 

architecture, components, and interface. 

3.4.1. Data Design Elements 



Data design (sometimes referred to as data architecting) creates a model of 

data and/or information that is represented at a high level of abstraction (the 

customer/user’s view of data). This data model is then refined into progressively 

more implementation-specific representations that can be processed by the 

computer-based system. The structure of data has always been an important part of 

software design. At the program component level, the design of data structures 

and the associated algorithms required to manipulate them is essential to the 

creation of high- quality applications. At the application level, the translation of a 

data model into a database is pivotal to achieving the business objectives of a 

system. At the business level, the collection of 

information stored in disparate databases and reorganized into a “data warehouse” 

enables data mining or knowledge discovery that can have an impact on the 

success of the business itself. 

Fig : Dimensions of the design model 



3.4.2 Architectural Design Elements 

The architectural design for software is the equivalent to the floor plan of a 

house. The floor plan depicts the overall layout of the rooms; their size, shape, and 

relationship to one another; and the doors and windows that allow movement into 

and out of the rooms. Architectural design elements give us an overall view of the 

software. 

The architectural model is derived from three sources: (1) information about 

the application domain for the software to be built; (2) specific requirements model 

elements such as data flow diagrams or analysis classes, their relationships and 

collaborations for the problem at hand; and (3) the availability of architectural 

styles and patterns. 

The architectural design element is usually depicted as a set of 

interconnected subsystems, often derived from analysis packages within the 

requirements model.Interface Design Elements 

The interface design for software is analogous to a set of detailed drawings 

for the doors, windows, and external utilities of a house. 

There are three important elements of interface design: (1) the user interface (UI); 

(2) external interfaces to other systems, devices, networks, or other producers or 

consumers of information; and (3) internal interfaces between various design 

components. 

These interface design elements allow the software to communicate 

externally and enable internal communication and collaboration among the 

components that populate the software architecture. 

Component-Level Design Elements 

The component-level design for software is the equivalent to a set of detailed 

drawings for each room in a house. These drawings depict wiring and plumbing 

within each room, the location of electrical receptacles and wall switches, sinks, 



showers, tubs, drains, cabinets, and closets. 

The component-level design for software fully describes the internal detail 

of each software component. To accomplish this, the component-level design 

defines data structures for all local data objects and algorithmic detail for all 

processing that occurs within a component and an interface that allows access to all 

component operations. 

Deployment-Level Design Elements 

Deployment-level design elements indicate how software functionality and 

subsystems will be allocated within the physical computing environment that will 

support the software. 

Deployment diagrams begin in descriptor form, where the deployment 

environment is described in general terms. Later, instance form is used and 

elements of the configuration are explicitly described. 



Architectural Design 

SOFTWARE ARCHITECTURE 

Architecture serves as a blueprint for a system. It provides an abstraction to 

manage the system complexity and establish a communication and coordination 

mechanism among components. It defines a structured solution to meet all the 

technical and operational requirements, while optimizing the common quality 

attributes like performance and security. 

What Is Architecture? 

Bass, Clements, and Kazman define this elusive term in the following way: 

“The software architecture of a program or computing system is the 

structure or structures of the system, which comprise software components, 

the externally visible properties of those components, and the relationships 

among them.” 

The architecture is not the operational software. Rather, it is a representation that enables 

you to 

(1) analyze the effectiveness of the design in meeting its stated requirements, 

(2) consider architectural alternatives at a stage when making design 

changes is still relatively easy, and 

(3) reduce the risks associated with the construction of the software. 

Why Is Architecture Important? 

Bass and his colleagues identify three key reasons that software architecture is 

important: 

• Representations of software architecture are an enabler for 

communication between all parties (stakeholders) interested in the 

development of a computer-based system. 

• The architecture highlights early design decisions that will have a profound 

impact on all software engineering work that follows and, as important, on 

the ultimate success of the system as an operational entity. 



• Architecture “constitutes a relatively small, intellectually graspable model 

of how the system is structured and how its components work together” The 

architectural design model and the architectural patterns contained within it 

are transferable. 

Architectural Descriptions 

An architectural description of a software-based system must exhibit 

characteristics that are analogous to those noted for the office building. 

The IEEE Computer Society has proposed, Recommended Practice for 

Architectural Description of Software-Intensive Systems, with the following 

objectives: 

(1) to establish a conceptual framework and vocabulary for use during 

the design of software architecture, 

(2) to provide detailed guidelines for representing an architectural description, 

and 

(3) to encourage sound architectural design practices. 

The IEEE standard defines an architectural description (AD) as “a collection of 

products to document an architecture.” The description itself is represented using 

multiple views, where each view is “a representation of a whole system from the 

perspective of a related set of concerns.” 

Architectural Decisions 

Each view developed as part of an architectural description addresses a 

specific stakeholder concern. To develop each view (and the architectural 

description as a whole) the system architect considers a variety of alternatives and 

ultimately decides on the specific architectural features that best meet the concern. 

Therefore, architectural decisions themselves can be considered to be one view of 

the architecture. The reasons that decisions were made provide insight into the 

structure of a system and its conformance to stakeholder concerns. 

ARCHITECTURAL GENRES 



The architectural genre will often dictate the specific architectural approach 

to the structure that must be built. In the context of architectural design, genre 

implies a specific category within the overall software domain. Within each 

category, you encounter a number of subcategories. Grady Booch suggests the 

following architectural genres for software-based systems: 

• Artificial intelligence—Systems that simulate or augment human 

cognition, locomotion, or other organic processes. 

• Commercial and nonprofit—Systems that are fundamental to the 

operation of a business enterprise. 

• Communications—Systems that provide the infrastructure for 

transferring and managing data, for connecting users of that data, or for 

presenting data at the edge of an infrastructure. 

• Content authoring—Systems that are used to create or manipulate textual 

or multimedia artifacts. • Devices—Systems that interact with the physical 

world to provide some point service for an individual. 

• Entertainment and sports—Systems that manage public events or that 

provide a large group entertainment experience. 

• Financial—Systems that provide the infrastructure for transferring 

and managing money and other securities. 

• Games—Systems that provide an entertainment experience for individuals or 
groups. 

• Government—Systems that support the conduct and operations of a 

local, state, federal, global, or other political entity. 

• Industrial—Systems that simulate or control physical processes. 

• Legal—Systems that support the legal industry. 

• Medical—Systems that diagnose or heal or that contribute to medical research. 

• Military—Systems for consultation, communications,

 command, control, and intelligence as well as offensive 



and defensive weapons. 

• Operating systems—Systems that sit just above hardware to provide 

basic software services. 

• Platforms—Systems that sit just above operating systems to provide advanced 
services. 

• Scientific—Systems that are used for scientific research and applications. 

• Tools—Systems that are used to develop other systems. 

• Transportation—Systems that control water, ground, air, or space vehicles. 

• Utilities—Systems that interact with other software to provide some point 

service. 

ARCHITECTURAL STYLES 

An architectural style as a descriptive mechanism to differentiate the house 

from other styles. The software that is built for computer-based systems also 

exhibits one of many architectural styles. Each style describes a system category 

that encompasses (1) a set of components (e.g., a database, computational modules) 

that perform a function required by a system; (2) a set of connectors that enable 

“communication, coordination and cooperation” among components; (3) 

constraints that define how components can be integrated to form the system; and 

(4) semantic models that enable a designer to understand the overall properties of a 

system by analyzing the known properties of its constituent parts. 

An architectural style is a transformation that is imposed on the design 

of an entire system. The intent is to establish a structure for all components 

of the system. 

A Brief Taxonomy of Architectural Styles 

Data-centered architectures. A data store (e.g., a file or database) resides at the 

center of this architecture and is accessed frequently by other components that 

update, add, delete, or  otherwise modify data within the store. The following 

figure illustrates a typical data-centered style. Client software accesses a central 

repository. In some cases the data repository is passive. Data-centered architectures 



promote integrability. 

 
 

Fig : Data-centered architecture 
Data-flow architectures. This architecture is applied when input data are to be 

transformed through a series of computational or manipulative components into 

output data. A pipe-and-filter pattern shown in following figure. It has a set of 

components, called filters, connected by pipes that transmit data from one 

component to the next. Each filter works independently of those components 

upstream and downstream, is designed to expect data input of a certain form, and 

produces data output of a specified form. However, the filter does not require 

knowledge of the Workings of its neighboring filters. 



 

 
 

Fig : Data-flow architecture 

 

Call and return architectures. This architectural style enables you 

to achieve a program structure that is relatively easy to modify and 

scale. A number of sub styles exist within this category: 

• Main program/subprogram architectures. This classic 

program structure decomposes function into a control 

hierarchy where a “main” program invokes a number of 

program components that in turn may invoke still other 

components. The following figure illustrates an architecture of 

this type. 

• Remote procedure call architectures. The components of a 



main program/subprogram architecture are distributed across 

multiple computers on a network. 

 

Fig : Main program/subprogram architecture 

Object-oriented architectures. The components of a system 

encapsulate data and the operations that must be applied to 

manipulate the data. Communication and coordination between 

components are accomplished via message passing. 

Layered architectures. The basic structure of a layered architecture 

is illustrated in following figure. A number of different layers are 

defined, each accomplishing operations that progressively become 

closer to the machine instruction set. At the outer layer, components 

service user interface operations. At the inner layer, components 

perform operating system interfacing. Intermediate layers provide 

utility services and application software functions. 

 

 



Fig : Layered architecture 

Architectural Patterns 

Architectural patterns address an application-specific problem 

within a specific context and under a set of limitations and 

constraints. The pattern proposes an architectural solution that can 

serve as the basis for architectural design. 

Organization and Refinement 

The following questions provide insight into an architectural style: 

Control. How is control managed within the architecture? Does a 

distinct control hierarchy  exist, and if so, what is the role of 

components within this control hierarchy? How do components 

transfer control within the system? How is control shared among 

components? What is the control topology? Is control synchronized 

or do components operate asynchronously? 

Data. How are data communicated between components? Is the flow 

of data continuous, or are data objects passed to the system 

sporadically? What is the mode of data transfer? Do data components 

exist, and if so, what is their role? How do functional components 

interact with data components? Are data components passive or 

active? How do data and control interact within  the system? 

These questions provide the designer with an early assessment 

of design quality and lay the foundation for more detailed analysis of 

the architecture. 

ARCHITECTURAL DESIGN 

As architectural design begins, the software to be developed must be 

put into context—that is,  the design should define the external 

entities (other systems, devices, people) that the software interacts 

with and the nature of the interaction. Once context is modeled and 

all external software interfaces have been described, you can identify 



a set of architectural archetypes. 

An archetype is an abstraction (similar to a class) that 

represents one element of system behavior. The set of archetypes 

provides a collection of abstractions that must be modeled 

architecturally if the system is to be constructed, but the archetypes 

themselves do not provide enough implementation detail. 

Representing the System in Context 

At the architectural design level, a software architect uses an 

architectural context diagram(ACD) to model the manner in which 

software interacts with entities external to its boundaries. The generic 

structure of the architectural context diagram is illustrated in 

following figure. Referring to the figure, systems that interoperate 

with the target system (the system for which an architectural design 

is to be developed) are represented as 

• Superordinate systems—those systems that use the 

target system as part of some higher-level processing 

scheme. 

• Subordinate systems—those systems that are used by the 

target system and provide data or processing that are 

necessary to complete target system functionality. 

• Peer-level systems—those systems that interact on a peer-to-

peer basis (i.e., information is either produced or consumed by 

the peers and the target system. 



• Actors—entities (people, devices) that interact with the target 

system by producing or consuming information that is 

necessary for requisite processing. 

 

Fig : Architectural context diagram 

Defining Archetypes 
An archetype is a class or pattern that represents a core 

abstraction that is critical to the design of an architecture for the 

target system. In general, a relatively small set of archetypes is 

required to design even relatively complex systems. The target 

system architecture is composed of these archetypes, which represent 

stable elements of the architecture but may be instantiated many 

different ways based on the behavior of the system. 

The following archetypes can be used : 

• Node. Represents a cohesive collection of input and output 

elements of the home security function. For example a node 

might be comprised of (1) various sensors and (2) a variety of 



alarm (output) indicators. 

• Detector. An abstraction that encompasses all sensing 

equipment that feeds information into the target system. 

• Indicator. An abstraction that represents all mechanisms 

(e.g., alarm siren, flashing lights, bell) for indicating that 

an alarm condition is occurring. 

• Controller. An abstraction that depicts the mechanism 

that allows the arming or disarming of a node. If 

controllers reside on a network, they have the ability 

to communicate with one another. 

 
Refining the Architecture into Components 
As the software architecture is refined into components, the 

structure of the  system begins to emerge. The architecture must 

accommodate many infrastructure components that enable 

application components but have no business connection to the 

application domain. Set of top-level components that address the 

following functionality: 

• External communication management—coordinates 



communication of the security function with external entities 

such as other Internet-based systems and external alarm 

notification. 

• Control panel processing—manages all control panel functionality. 

• Detector management—coordinates access to all detectors attached 

to the system. 

• Alarm processing—verifies and acts on all alarm conditions. 

Each of these top-level components would have to be elaborated 

iteratively and then positioned within the overall architecture. 

Component-level design 

Component-level design occurs after the first iteration of 

architectural design has been completed. At this stage, the overall 

data and program structure of the software has been established. The 

intent is to translate the design model into operational software. 

WHAT IS A COMPONENT? 

 

A component is a modular building block for computer 

software. More formally, the OMG Unified Modeling Language 

Specification defines a component as “a modular, deployable, and 

replaceable part of a system that encapsulates implementation and 

exposes a set of interfaces.” 

The true meaning of the term component will differ depending 

on the point of view of  the software engineer who uses it. 

An Object-Oriented View 

In the context of object-oriented software engineering, a component 

contains a set of collaborating classes. Each class within a 

component has been fully elaborated to include all attributes and 

operations that are relevant to its implementation. As part of the 

design elaboration, all interfaces that enable the classes to 

communicate and collaborate with other design classes must also be 



defined. To accomplish this, you begin with the requirements model 

and elaborate analysis classes and infrastructure classes. 

The Traditional View 

In the context of traditional software engineering, a component 

is a functional element of a program that incorporates processing 

logic, the internal data structures that are required to implement the 

processing logic, and an interface that enables the component to be 

invoked and data to be passed to it. A traditional component, also 

called a module, resides within  the software architecture and serves 

one of three important roles: 

(1) A control component that coordinates the invocation of 

all other problem domain components, 

(2) a problem domain component that implements a complete or 

partial function that is required by the customer, or 

(3) an infrastructure component that is responsible for functions 

that support the processing required in the problem domain. 

DESIGNING CLASS-BASED COMPONENTS 

 

Basic Design Principles 

Four basic design principles are applicable to component-

level design and have been widely adopted when object-oriented 

software engineering is applied. 

The Open-Closed Principle (OCP). “A module [component] 

should be open for extension but closed for modification” This 

statement seems to be a contradiction, but it represents one of the 

most important characteristics of a good component-level design. 

Stated simply, you should specify the component in a way that 

allows it to be extended without the need to make internal 

modifications to the component itself. 



The Liskov Substitution Principle (LSP). “Subclasses should be 

substitutable for their base classes”. This design principle, originally 

proposed by Barbara Liskov, suggests that a component that uses a 

base class should continue to function properly if a class derived 

from the base class is passed to the component instead. LSP demands 

that any class derived from a base class must honor any implied 

contract between the base class and the components that use it. In the 

context of this discussion, a “contract” is a precondition that must be 

true before the component uses a base class and a post condition that 

should be true after the component uses a base class. 

Dependency Inversion Principle (DIP). “Depend on abstractions. 

Do not depend on concretions”. The more a component depends on 

other concrete components, the more difficult  it will be to extend. 

The Interface Segregation Principle (ISP). “Many client-specific 

interfaces are better than one general purpose interface”. ISP 

suggests that you should create a specialized interface to serve each 

major category of clients. Only those operations that are relevant to a 

particular category of clients should be specified in the interface for 

that client. If multiple clients require the same operations, it should be 

specified in each of the specialized interfaces. 

The Release Reuse Equivalency Principle (REP). “The granule of 

reuse is the granule of release”. When classes or components are 

designed for reuse, there is an implicit contract that is established 

between the developer of the reusable entity and the people who will 

use it. The developer commits to establish a release control system 

that supports and maintains older versions of the entity while the 

users slowly upgrade to the most current version. Rather than 

addressing each class individually, it is often advisable to group 

reusable classes into packages that can be managed and controlled as 



newer versions evolve. 

The Common Closure Principle (CCP). “Classes that change 

together belong together.” Classes should be packaged cohesively. 

That is, when classes are packaged as part of a design, they should 

address the same functional or behavioral area. When some 

characteristic of that area must change, it is likely that only those 

classes within the package will require modification. This leads to 

more effective change control and release management. 

The Common Reuse Principle (CRP). “Classes that aren’t reused 

together should not be grouped together”. When one or more 

classes within a package changes, the release number of the package 

changes. All other classes or packages that rely on the package that 

has been changed must now update to the most recent release of the 

package and be tested to ensure that the new release operates without 

incident. If classes are not grouped cohesively, it is possible  that a 

class with no relationship to other classes within a package is 

changed. 

Component-Level Design Guidelines 

Ambler suggests the following guidelines: 

Components. Naming conventions should be established for 

components that are specified as part of the architectural model and 

then refined and elaborated as part of the component-level model. 

Architectural component names should be drawn from the problem 

domain and should have meaning to all stakeholders who view the 

architectural model. 

Interfaces. Interfaces provide important information about 

communication and collaboration. Ambler recommends that (1) 

lollipop representation of an interface should be used in lieu of the 

more formal UML box and dashed arrow approach, when diagrams 



grow complex; (2) for consistency, interfaces should flow from the 

left-hand side of the component box; (3) only those interfaces that are 

relevant to the component under consideration should be shown, even 

if other interfaces are available. 

Cohesion 

cohesion is the “single-mindedness” of a component. Lethbridge and 

Laganiére define a number of different types of cohesion 

Functional. Exhibited primarily by operations, this level of 

cohesion occurs when a component performs a targeted computation 

and then returns a result. 

Layer. Exhibited by packages, components, and classes, this type of 

cohesion occurs when a higher layer accesses the services of a lower 

layer, but lower layers do not access higher layers. 

Communicational. All operations that access the same data are 

defined within one class. In general, such classes focus solely on the 

data in question, accessing and storing it. 

 
Coupling 

Coupling is a qualitative measure of the degree to which classes are 

connected to one another. As classes (and components) become more 

interdependent, coupling increases. An important objective in 

component-level design is to keep coupling as low as is possible. 

Class coupling can manifest itself in a variety of ways. Lethbridge 

and Laganiére define the following coupling categories: 

Content coupling. Occurs when one component “surreptitiously 

modifies data that is internal to another component”. 

Common coupling. Occurs when a number of components all make 

use of a global variable. Although this is sometimes necessary, 

common coupling can lead to uncontrolled error propagation and 



unforeseen side effects when changes are made. 

Control coupling. Occurs when operation A() invokes operation B() and 
passes a control flag to 

B. The control flag then “directs” logical flow within B. The problem 

with this form of coupling is that an unrelated change in B can result 

in the necessity to change the meaning of the control flag that A 

passes. If this is overlooked, an error will result. 

Stamp coupling. Occurs when ClassB is declared as a type for an 

argument of an operation of ClassA. Because ClassB is now a part 

of the definition of ClassA, modifying the system becomes more 

complex. 

Data coupling. Occurs when operations pass long strings of data 

arguments. The “bandwidth” of communication between classes and 

components grows and the complexity of the interface increases. 

Testing and maintenance are more difficult. 

Routine call coupling. Occurs when one operation invokes another. 

This level of coupling is common and is often quite necessary. 

However, it does increase the connectedness of a system. 

Type use coupling. Occurs when component A uses a data type 

defined in component B. If the type definition changes, every 

component that uses the definition must also change. 

Inclusion or import coupling. Occurs when component A imports 

or includes a package or the content of component B. 

External coupling. Occurs when a component communicates or 

collaborates with infrastructure components. Although this type of 

coupling is necessary, it should be limited to a small number of 

components or classes within a system. 

Software must communicate internally and externally. 

Therefore, coupling is a fact of life. However, the designer should 



work to reduce coupling whenever possible. 

CONDUCTING COMPONENT-LEVEL DESIGN 

 

The following steps represent a typical task set for component-level 

design, when it is applied for an object-oriented system. 

Step 1. Identify all design classes that correspond to the problem 

domain. Using the requirements and architectural model, each 

analysis class and architectural component is elaborated. 

Step 2. Identify all design classes that correspond to the 

infrastructure domain. These classes are not described in the 

requirements model and are often missing from the architecture 

model, but they must be described at this point. 

Step 3. Elaborate all design classes that are not acquired as 

reusable components. Elaboration requires that all interfaces, 

attributes, and operations necessary to implement the class be 

described in detail. Design heuristics (e.g., component cohesion and 

coupling) must be considered as this task is conducted. 

Step 3a. Specify message details when classes or components 

collaborate. The requirements model makes use of a collaboration 

diagram to show how analysis classes collaborate with one another. 

As component-level design proceeds, it is sometimes useful to show 

the details of these collaborations by specifying the structure of 

messages that are passed between objects within a system. Although 

this design activity is optional, it can be used as a precursor to the 

specification of interfaces that show how components within the 

system communicate and collaborate. 

Step 3c. Elaborate attributes and define data types and data 

structures required to implement them. In general, data structures 

and types used to define attributes are defined within the context of 



the programming language that is to be 

Step 3d. Describe processing flow within each operation in detail. 

This may be accomplished using a programming language-based 

pseudocode or with a UML activity diagram. Each 

software component is elaborated through a number of iterations that 

apply the stepwise refinement concept. 

Step 4. Describe persistent data sources (databases and files) and 

identify the classes required to manage them. Databases and files 

normally transcend the design description of an individual 

component. In most cases, these persistent data stores are initially 

specified as part of architectural design. However, as design 

elaboration proceeds, it is often useful to provide additional detail 

about the structure and organization of these persistent data sources. 

Step 5. Develop and elaborate behavioral representations for a 

class or component. UML state diagrams were used as part of the 

requirements model to represent the externally observable behavior 

of the system and the more localized behavior of individual analysis 

classes. During component-level design, it is sometimes necessary to 

model the behavior of a design class. 

Step 6. Elaborate deployment diagrams to provide additional 

implementation detail. Deployment diagrams are used as part of 

architectural design and are represented in descriptor form. In this 

form, major system functions (often represented as subsystems) are 

represented within the context of the computing environment that 

will house them. During component-level design, deployment 

diagrams can be elaborated to represent the location of key packages 

of components. 

Step 7. Refactor every component-level design representation 

and always consider alternatives. The first component-level model 



you create will not be as complete, consistent, or accurate as the nth 

iteration you apply to the model. 

 

Deployment level design elements 

 The deployment level design element shows the software functionality and 

subsystem that allocated in the physical computing environment which support 

the software. 

 Following figure shows  three computing environment as shown. These are the 

personal computer, the CPI server and the Control panel. 

 

HIPO Diagram 

 

HIPO (Hierarchical Input Process Output) diagram is a combination of two 

organized method to analyze the system and provide the means of 

documentation. HIPO model was developed by IBM in year 1970. 

HIPO diagram represents the hierarchy of modules in the software system. 

Analyst uses HIPO diagram in order to obtain high-level view of system 

functions. It decomposes functions into sub-functions in a hierarchical manner. 

It depicts the functions performed by system. 

HIPO diagrams are good for documentation purpose. Their graphical 

representation makes it easier for designers and managers to get the pictorial 

idea of the system structure. 



 

In contrast to IPO (Input Process Output) diagram, which depicts the flow of 

control and data in a module, HIPO does not provide any information about 

data flow or control flow. 

 

Example 

Both parts of HIPO diagram, Hierarchical presentation and IPO Chart are used 

for structure design of software program as well as documentation of the same. 

 

Structure Charts 
 

Structure chart is a chart derived from Data Flow Diagram. It represents the 

system in more detail than DFD. It breaks down the entire system into lowest 

functional modules, describes functions and sub-functions of each module of 

the system to a greater detail than DFD. 

Structure chart represents hierarchical structure of modules. At each layer a 

specific task is performed. 

Here are the symbols used in construction of structure charts - 



 Module - It represents process or subroutine or task. A control module 

branches to more than one sub-module. Library Modules are re-usable 

and invokable from any module.

 

 Condition - It is represented by small diamond at the base of module. It 

depicts that control module can select any of sub-routine based on some 

condition.  

 Jump - An arrow is shown pointing inside the module to depict that the 

control will jump in the middle of the sub-module.  



 Loop - A curved arrow represents loop in the module. All sub-modules 

covered by loop repeat execution of module.

 

 Data flow - A directed arrow with empty circle at the end represents data 

flow.  

 Control flow - A directed arrow with filled circle at the end represents 

control flow.  

 

Decision Trees 

Decision trees are a method for defining complex relationships by describing 

decisions and avoiding the problems in communication. A decision tree is a 

diagram that shows alternative actions and conditions within horizontal tree 

framework. Thus, it depicts which conditions to consider first, second, and so 

on. 

Decision trees depict the relationship of each condition and their permissible 

actions. A square node indicates an action and a circle indicates a condition. It 



forces analysts to consider the sequence of decisions and identifies the actual 

decision that must be made. 

 

The major limitation of a decision tree is that it lacks information in its format 

to describe what other combinations of conditions you can take for testing. It is 

a single representation of the relationships between conditions and actions. 

For example, refer the following decision tree − 

 
 

Decision Tables 
 

Decision tables are a method of describing the complex logical relationship in a 

precise manner which is easily understandable. 

 It is useful in situations where the resulting actions depend on the 

occurrence of one or several combinations of independent conditions. 

 It is a matrix containing row or columns for defining a problem and the 

actions. 



Components of a Decision Table 

 Condition Stub − It is in the upper left quadrant which lists all the 

condition to be checked. 

 Action Stub − It is in the lower left quadrant which outlines all the 

action to be carried out to meet such condition. 

 Condition Entry − It is in upper right quadrant which provides answers 

to questions asked in condition stub quadrant. 

 Action Entry − It is in lower right quadrant which indicates the 

appropriate action resulting from the answers to the conditions in the 

condition entry quadrant. 

The entries in decision table are given by Decision Rules which define the 

relationships between combinations of conditions and courses of action. In 

rules section, 

 Y shows the existence of a condition. 

 N represents the condition, which is not satisfied. 

 A blank - against action states it is to be ignored. 

 X (or a check mark will do) against action states it is to be carried out. 

For example, refer the following table − 

CONDITIONS Rule 1 Rule 2 Rule 3 

Advance payment made Y N N 

Purchase amount = Rs 

10,000/- 

- Y Y 

Regular Customer - Y N 

ACTIONS    

Give 5% discount X X - 

Give no discount - - X 



 

Structured Flowchart 

Structures 

You can make your flowcharts easier to understand and less subject to errors by 

using only a fixed set of structures. These structures include: 

 

 Sequence 

 Decision 

 Loop 

 Case 

 

Whether you are flowcharting software programs or business processes, using 

only these structures will make it easier to find and correct errors in your charts. 

Each structure has a simple flow of control with one input and one output. 

These structures can then be nested within each other. Any chart can be drawn 

using only these structures. You do not have to use GOTO or draw spaghetti 

diagrams just because you are drawing a flowchart. You can draw structured 

flowcharts. 

The Colored Edge Shapes Stencil 

The samples shown below were all drawn using RFFlow. It will allow you to 

draw charts just like these. 

 

Once RFFlow is installed, run RFFlow and click on the More 

Shapes  button. 

 

Scroll to the Flowcharting folder and click the plus sign to open it. 

 

Click the Colored Edge Shapes stencil and then click the Add Stencil button. 

 

 

 

 

 

 

 

 

 

 

 

 



Sequence 

 
 

 

The flowchart above demonstrates a sequence of steps. The reader would start 

at the Start shape and follow the arrows from one rectangle to the other, 

finishing at the End shape. A sequence is the simplest flowcharting 

construction. You do each step in order. 

 

If your charts are all sequences, then you probably don't need to draw a 

flowchart. You can type a simple list using your word processor. The power of a 

flowchart becomes evident when you include decisions and loops. 

 

RFFlow allows you to number your shapes if you wish. Run RFFlow and click 

on Tools, Number Shapes, and put a check mark in Enable numbers for the 

entire chart. You can also choose to have a number or not in each individual 

shape and you can quickly renumber your chart at any time. 

 

 

 

 

 

 

 

 

 

 

 



Decision 

 
 

 

This structure is called a decision, "If Then.. Else" or a conditional. A question 

is asked in the decision shape. Depending on the answer the control follows 

either of two paths. In the chart above, if the temperature is going to be less than 

freezing (32 degrees Fahrenheit) the tomatoes should be covered. Most RFFlow 

stencils include the words "Yes" and "No" so you can just drag them onto your 

chart. "True" and "False" are also included in most of the flowcharting stencils. 

 



Loop

 

 

 

This structure allows you to repeat a task over and over. The red chart above on 

the left does the task and repeats doing the task until the condition is false. It 

always does the task at least once. The green chart on the right checks the 

condition first and continues doing the task while the condition is true. In the 

green chart the task may not be done at all. You can also have the conditions 

reversed and your loop is still a structured design loop. 



 
 

 

The above chart is a "For Loop." In this example the task is performed 10 times 

as X counts from 0 to 10. Depending on the condition, the task may not be 

performed at all. 

 

There is also a "For Each" structure that is like the for loop, but has no counter. 

It will go through each item of a collection and do the task. You don't have to 

know the length of the collection or use a counter. It is essentially saying "do 

this for every item in the collection". 

 

 

 

 

 

 

 

 

 

 

 



Case 

 

 
 

 

 

The structure above is called the case structure or selection structure. The 

decision works fine if you have only two outputs, but if there are several, then 

using multiple decisions makes the chart too busy. Since the case structure can 

be constructed using the decision structure, it is superfluous, but useful. The 

case structure helps make a flowchart more readable and saves space on the 

paper. 

 

 

 

 

 

 

 

 

 

 



Other Good Design Practices 

Start and End 

 
 

 

Each flowchart must have one starting point. It can have multiple ending points, 

but only one starting point. The same terminal shape is used for the start and 

end. The terminal shape is a rectangle that is semicircular on the left and right as 

shown above. You can use other words instead of start and end, like begin and 

finish, or any words with a similar meaning. Some companies use an oval 

instead of a terminal shape. The bottom line is that it should be clear to the 

person looking at the chart where the chart starts and where it ends. 

 

 

 

 

 

 



 

Connector Block and Off Page Connector 

 
 

Pseudo-Code 

Pseudo code is written more close to programming language. It may be 

considered as augmented programming language, full of comments and 

descriptions. 

Pseudo code avoids variable declaration but they are written using some actual 

programming language’s constructs, like C, Fortran, Pascal etc. 

Pseudo code contains more programming details than Structured English. It 

provides a method to perform the task, as if a computer is executing the code. 

Example 

Program to print Fibonacci up to n numbers. 



void function Fibonacci 

Get value of n; 

Set value of a to 1; 

Set value of b to 1; 

Initialize I to 0 

for (i=0; i< n; i++) 

{ 

   if a greater than b  

   { 

      Increase b by a; 

      Print b; 

   }  

   else if b greater than a 

   { 

      increase a by b; 

      print a; 

   } 

} 

 

Nassi-Shneiderman Diagram 

Nassi-Shneiderman diagrams (aka, NS diagrams or structograms), are used to 

outline structured programs. They are not very common in industry today but 

are sometimes used as a computer science teaching tool, often as an alternate to 

flowcharts. A simple example is shown below. 

 



Sample Nassi-Shneiderman diagram 

 

 

Nassi-Shneiderman Shapes 

Process 

 

Any statement that is not 

a branch or loop. 

Branches 

 

Binary branch statement, 

such as an if statement 

with a true/false choice. 

 

 

Multiple branches, 

such as a switch-case statement. 

Default case is the short leg of the triangle. 



Loops 

 

Loop with precondition, 

such as a for loop or a while loop 

 

Loop with postcondition, 

such as a do-while loop. 

 

 

Nassi-Shneiderman  

Diagram in Excel 

Adding a bunch of shapes to the diagram is fairly straightforward. (Well, except 

for the Branch triangle, which is a pain. We'll show why below.) Since the 

default shape style in Excel is dark blue with centered text, we will create some 

baseline shapes with plain styling that we place off to the side and then copy 

and paste to build the diagram. 

Create a Grid 

Before adding shapes, the first step is to create a grid and then turn on Snap to 

Grid. These steps are covered in the How to Flowchart in Excel article, so we 

won't repeat them here. 

https://www.breezetree.com/articles/how-to-flow-chart-in-excel


Create a Baseline Process Block 

Click the Insert tab, then click the Shapes dropdown and select either a 

Rectangle from the Basic Shapes group or a Process shape from the Flowchart 

group. Use you left mouse button to draw it to size on the sheet. With the shape 

still selected, right-click on the shape and select Format Shape from the context 

menu. Follow these steps to set the styling: 

 On the Format Shape dialog, select Fill from the left menu. Choose the 

Solid fill option and use the Color dropdown to set the color to white. 

 Next, select Line Color from the left menu. Choose the Solid line option 

and use the Color dropdown to set the color to black. 

 Next, select Line Style from the left menu. Change the Width setting to 

0.75 pt. 

 Click the Close button 

 Type "text" (or some othert placeholder text) into the shape. 

 With the shape still selected, click the Home tab, and use the font, font 

size, and font color toolbar controls to set the font as desired. 

 Right-click on the shape again and select Set as Default Shape from the 

menu. Despite the misleading menu label, this sets the default style, not 

the default shape type. Now all shapes added will use this 

Create a Baseline Branch Shape (Triangle) 

There are several triangle shapes available in Excel, but the only one that is 

suitable is the Isoceles Triangle under the Basic Shapes group. It has an 

adjustment handle (covered below in Adjusting Branch Shapes) that lets you 

move the center vertex for making switch branches. There is one problem, 

though. It points upward, and if we rotate the shape, then any text will be upside 

down. So what we will do is to create a branch shape and use a borderless, 

transparent textbox on top of that. 

Triangle: 

1. Add the Isoceles triangle as you did the process rectangle before. 

2. Next, right-click on the triangle and select Size and Properties from the 

menu. 

3. On the size dialog, change the Rotation to 180°. 

Textbox: 

1. Add a textbox shape to the sheet. (Icon: ) 

2. Add some placeholder text to the textbox. 

3. Set the position and the size of the textbox to be on top of the triangle 

(see the Editing Tips section below). 



Grouping the Triangle and Textbox: 

Grouping shapes together lets you treat multiple shapes as a single object, 

which is how we will want to use our contrived branch block. 

1. Click on the textbox to select it. 

2. Hold the shift key and click on the triangle so both shapes are selected. 

3. Right-click on a line of either shape and select Grouping > Group from 

the menu. 

Final Edit: 

Once shapes are grouped you can select individual shapes within the group by 

first clicking on the group to select it, and then clicking again on the individual 

shape. Do this now to select the textbox. Right-click on the textbox and use the 

Format Shape dialog to change the Fill to None and the Line Color to No line. 

You now have a reusable branch element. 

Add Shapes to the Diagram 

Now that we have created the base shapes, creating the diagram is just a matter 

of copying and pasting the baseline shapes. Of course, you will need to position 

and size the shapes as you build the diagram. You will also need to set the z-

order* of the triangles and adjust their vertices so that the branch statements are 

properly positioned on top of the process blocks, which are both covered below 

in the Editing tips section. 

* Z-order is the front to back positioning. When shapes overlap, it determines 

which shape is on top. 

Editing Tips 

Adjusting Branch Shapes 

In Excel, shapes that can be altered display yellow "adjustment handles" at the 

adjustment points. You can click and drag these points to change the shape of 

the shape, so to speak. 

 
Triangle adjustment 



 
Adjustment results 

 

 

Changing The Z-Order (Stacking Order) 

When dealing with branches and loop tests, it is often necessary to change the z-

order stacking of a shape by bringing it forward or sending it backward. The 

easiest way to do this is to right click on a shape and use Bring to Front or Send 

to Back from the context menu. But the following keyboard shortcuts are useful 

when a shape is hard to select with a mouse. 

 Alt + P A E K - Send to Back: Places the shape underneath all other 

shapes. 

 Alt + P A E B - Send Backward: Sends the shape one layer down. 

 Alt + P A F R - Bring to Front: Places the shape on top of all other 

shapes. 

 Alt + P A F F - Bring Forward: Brings the shape one layer up. 

The multi-key shortcuts look odd compared to most keyboard shortcuts, but 

when you hold the Alt key, Excel hightlights them on the screen making the 

path becomes obvious. The letters map to characters in each word, even though 

they are not underlined like menu systems. For example, Send to Back is Page 

Layout > Arrange > Send Backward > Send to Back. 

Selecting Shapes 

You can select shapes with your mouse and use the Tab key to toggle between 

selected shapes. To select multiple shapes, click the first shape and then hold 

the Shift key down as you click on the others. You can also use a special Select 

Objects cursor available on the Home tab under the Find & Select menu. You 

need to toggle this cursor off to resume normal mouse usage - via the menu or 

by double-clicking anywhere on the worksheet. 

Moving Shapes 

Clicking and dragging with the mouse is the most obvious way, but you can 

also use the keyboard arrow keys to move a shape around. With Snap to Grid 

on, shapes will snap to the next cell as you do this. 



Changing Text Alignment 

On the Home tab, use the standard horizontal and vertical text alignment 

buttons. 

Hiding the Excel Gridlines 

On the View tab, uncheck the Gridlines checkbox. 

Saving To Non-Excel Formats 

Starting with Excel 2007, copy operations place an image of the copied range 

onto the Windows clipboard. To save the diagram as an image, select the cells 

fully encompassing the diagram, copy, and then paste into an image editor (even 

MS Paint will suffice). Alternately, you can paste into Word. I recommend 

doing a Paste Special and choosing the Enhanced Metafile format. Metafiles are 

like vector graphics in that when you resize the image, the lines and text will 

still render nicely. 


	Fig : Translating the requirements model into the design model
	THE DESIGN PROCESS
	Software Quality Guidelines and Attributes
	The Evolution of Software Design
	Abstraction
	data abstractions.
	Architecture
	Patterns
	Separation of Concerns
	8.3.5 Modularity
	Fig : Modularity and software cost
	Functional Independence
	Refinement
	Aspects
	Refactoring
	Object-Oriented Design Concepts
	Design Classes

	THE DESIGN MODEL
	3.4.1. Data Design Elements
	Fig : Dimensions of the design model
	Component-Level Design Elements
	Deployment-Level Design Elements

	Architectural Design
	SOFTWARE ARCHITECTURE
	What Is Architecture?
	“The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them.”
	Why Is Architecture Important?
	Architectural Descriptions
	Architectural Decisions

	ARCHITECTURAL GENRES
	ARCHITECTURAL STYLES
	A Brief Taxonomy of Architectural Styles
	Fig : Data-centered architecture
	Fig : Data-flow architecture
	Fig : Main program/subprogram architecture
	Fig : Layered architecture
	Organization and Refinement

	ARCHITECTURAL DESIGN
	Representing the System in Context
	Fig : Architectural context diagram
	Refining the Architecture into Components


	Component-level design
	WHAT IS A COMPONENT?
	An Object-Oriented View
	The Traditional View

	DESIGNING CLASS-BASED COMPONENTS
	Basic Design Principles
	Component-Level Design Guidelines
	Cohesion
	Coupling

	CONDUCTING COMPONENT-LEVEL DESIGN
	HIPO Diagram
	Example

	Structure Charts
	Decision Trees
	Decision Tables
	Components of a Decision Table

	Pseudo-Code
	Example

	Nassi-Shneiderman Diagram
	Nassi-Shneiderman Shapes
	Process
	Branches
	Loops

	Nassi-Shneiderman
	Diagram in Excel
	Create a Grid
	Create a Baseline Process Block
	Create a Baseline Branch Shape (Triangle)
	Add Shapes to the Diagram

	Editing Tips
	Adjusting Branch Shapes
	Changing The Z-Order (Stacking Order)
	Selecting Shapes
	Moving Shapes
	Changing Text Alignment
	Hiding the Excel Gridlines
	Saving To Non-Excel Formats



